Data Science with Python

Learn data science with real-world projects & industry tools

4.8 (100 reviews)👥 100 students12-14 Weeks📈 Beginner → Advanced
View Curriculum
Data Science with Python
Hands-on Projects
Industry Tools
Certificate
Portfolio

About the Course

Gain expertise in data science by mastering Python, statistics, machine learning, and data visualization. Work on real datasets and build portfolio-ready projects.

Tip: Hybrid mentorship pairs you with an expert to review code, unlock roadblocks, and plan your portfolio.

Prerequisites

  • Basic Python programming
  • Math & Statistics fundamentals
  • Laptop + stable internet
  • Interest in data-driven problem solving

Curriculum

Module 1 · Introduction to Data Science
  • What is Data Science?
  • Roles of Data Scientist, Analyst & Engineer
  • Data lifecycle & workflow
  • Case studies in data science
Module 2 · Python for Data Science
  • NumPy for arrays
  • Pandas for data handling
  • Matplotlib & Seaborn for visualization
  • Basic data wrangling
Module 3 · Data Cleaning & Preprocessing
  • Handling missing values
  • Data transformation & scaling
  • Encoding categorical variables
  • Outlier detection
Module 4 · Exploratory Data Analysis (EDA)
  • Summary statistics
  • Data distributions & visualization
  • Correlation analysis
  • Insights generation
Module 5 · Probability & Statistics
  • Descriptive vs Inferential statistics
  • Probability distributions
  • Hypothesis testing
  • ANOVA & chi-square tests
Module 6 · Regression & Classification
  • Linear & Logistic Regression
  • Decision Trees & Random Forests
  • Support Vector Machines (SVM)
  • Evaluation metrics
Module 7 · Clustering & Recommendation Systems
  • K-means clustering
  • Hierarchical clustering
  • Principal Component Analysis (PCA)
  • Recommendation systems basics
Module 8 · Feature Engineering & Model Tuning
  • Feature selection methods
  • Dimensionality reduction
  • Hyperparameter tuning (Grid Search, Random Search)
  • Cross-validation techniques
Module 9 · Introduction to Big Data & Deep Learning
  • Spark & PySpark basics
  • Intro to TensorFlow/Keras
  • Neural networks for data science
  • Use cases of deep learning in DS
Module 10 · Capstone Project
  • Select dataset
  • Apply data science pipeline
  • Model training & evaluation
  • Project report & presentation

Ready to start learning?

Join thousands of learners building career-ready AI skills.